Wednesday, May 14, 2008

TV remote control Blocker


Just point this small device at the TV and the remote gets jammed . The circuit is self explanatory . 555 is wired as an astable multivibrator for a frequency of nearly 38 kHz. This is the frequency at which most of the modern TVs receive the IR beam . The transistor acts as a current source supplying roughly 25mA to the infra red LEDs. To increase the range of the circuit simply decrease the value of the 180 ohm resistor to not less than 100 ohm. It is required to adjust the 10K potentiometer while pointing the device at your TV to block the IR rays from the remote. This can be done by trial and error until the remote no longer responds

555 timer as the bases of the touch switch


This circuit uses a 555 timer as the bases of the touch switch. You can learn more about 555 timers in the Learning section on my site. When the plate is touched the 555 timer is triggered and the output on pin 3 goes high turning on the LED and the buzzer for a certain period of time. The time that theLED and the buzzer is on is based on the values of the capacitor and resistor connected to pin 6 & 7. The 10M resistor on pin 2 causes the the circuit to be very sensitive to the touch

Control electrical appliances using PC


Control electrical appliances using PC Here is a circuit for using the printer port of a PC, for control application using software and some interface hardware. The interface circuit along with the given software can be used with the printer port of any PC for controlling up to eight equipment .The interface circuit shown in the figure is drawn for only one device, being controlled by D0 bit at pin 2 of the 25-pin parallel port. Identical circuits for the remaining data bits D1 through D7 (available at pins 3 through 9) have to be similarly wired. The use of opto-coupler ensures complete isolation of the PC from the relay driver circuitry.Lots of ways to control the hardware can be implemented using software. In C/C++ one can use the outportb(portno,value) function where portno is the parallel port address (usually 378hex for LPT1) and 'value' is the data that is to be sent to the port. For a value=0 all the outputs (D0-D7) are off. For value=1 D0 is ON, value=2 D1 is ON, value=4, D2 is ON and so on. eg. If value=29(decimal) = 00011101(binary) ->D0,D2,D3,D4 are ON and the rest are OFF.

Generating -5VDC from +5VDC

If you happen to have the March 1984 issue of Radio-Electronics, turn to page 78. This issue has the very first instalment of Robert Grossblatt's "Designer's Notebook" column. In it, he shows a simple circuit which will supply a negative voltage, given a positive voltage. It's basically a 555-based oscillator, and a voltage-doubling rectifier. He claims the negative-voltage output should be good for about 60ma. No-load voltage should be pretty close to the input voltage (but negative), although the voltage will drop a bit, depending on the load. If you put +5V into the circuit, it'll give you around -5V out. load. If you put +5V into the circuit, it'll give you around -5V out. If the load makes the voltage drop too low (-3V or -4V), you could always just feed the circuit with a higher voltage (like maybe 9V or 12V) and then just regulate the output down to -5V using a 7905 regulator. I've used this circuit a couple of times for powering op-amp's, and it works great!


The circuit is set up to oscillate at about 45kHz, with a duty cycle pretty close to 50%. None of the values of any of the parts are terribly critical, so if the capacitors or resistors are "in the ballpark", it should still work okay

Generating -5VDC from +5VDC

If you happen to have the March 1984 issue of Radio-Electronics, turn to page 78. This issue has the very first instalment of Robert Grossblatt's "Designer's Notebook" column. In it, he shows a simple circuit which will supply a negative voltage, given a positive voltage. It's basically a 555-based oscillator, and a voltage-doubling rectifier. He claims the negative-voltage output should be good for about 60ma. No-load voltage should be pretty close to the input voltage (but negative), although the voltage will drop a bit, depending on the load. If you put +5V into the circuit, it'll give you around -5V out. load. If you put +5V into the circuit, it'll give you around -5V out. If the load makes the voltage drop too low (-3V or -4V), you could always just feed the circuit with a higher voltage (like maybe 9V or 12V) and then just regulate the output down to -5V using a 7905 regulator. I've used this circuit a couple of times for powering op-amp's, and it works great!


The circuit is set up to oscillate at about 45kHz, with a duty cycle pretty close to 50%. None of the values of any of the parts are terribly critical, so if the capacitors or resistors are "in the ballpark", it should still work okay

FM Oscillator

a VCO and buffer that operates across the entire FM broadcast band (88-108 MHz). I stole the main idea from the local oscillator in a radio shack scanner (pro2004). I like this design because it doesn't require a tapped coil, it tunes very broadly, it's stable, and it has a nice, hot output

As with all VHF circuits, pay particular attention to construction technique. I recommend cutting little square islands on one side of a two-sided copper-clad board. Use the remainder of that side as the ground plane, and leave the bottom side to serve as a shield. If you keep all lead lengths short, the circuit is quite stable.
With the parts listed here, effective frequency range extends well beyond the FM broadcast band in both directions. If a 6V zener is substituted for CR2, the circuit will run from a 9V battery, with a slightly smaller tuning range. The output is hot enough that the signal can easily travel a city block using just a clip lead for an antenna.

Headlight Reminder Circuit

A [...] solution is to go from the +12 Switched sidelight feed, via a buzzer to the drivers door light switch, you then need to put a diode in the door circuit to stop the other doors operating the buzzer
Thus when you leave your lights on AND open the drivers door, the buzzer sounds. If you mean to leave your lights on, just shut the door and the buzzer stops!

Peltier coolers/heaters

A typical peltier device consists of a number of series-connected N- and P-type semiconductors sandwiched between two ceramic plates, such that the flow of majority carriers (electrons or holes) in each semiconductor occurs in a single direction.

The device works by depleting the cold side of thermally-generated carriers and moving them to the hot side; in essence, the device is a heat pump. When a fixed potential is placed across the device's terminals, a fixed temperature difference will be maintained between the hot and cold sides. If the hot side has a sufficiently "beefy" heat sink, this temperature difference can be several tens of degrees C.
The process is reversible -- placing a temperature difference across the device will cause a voltage to develop across its terminals.

SIMPLE SECONDS FLASHER

This simple circuit , ‘seconds flasher or blinking activity indicator ,as it is commonly known, can be used with clocks. This circuit is built around the IC CD40106 , popularly used in clock modules.

The preset resistor VR1 is used here to adjust the led flash at a frequency of 1KHZ.

Although CMOS chips can work off supply voltages between 3 and 15 volts, a stable and regulated power supply should be used to maintain timing stability . Another simple way is, use of 9 volt pp3 battery. This circuit can be assembled in a small general purpose pcb board.

A simple Remote control Tester


Here is a handy gadget for test- ing of infrared (IR) based re- mote control transmitters used for TVs and VCRs etc. The IR signals from a remote control transmitter are sensed by the IR sensor module in the tester and its output at pin 2 goes low. This in turn switches on transistor T1 and causes LED1 to blink. At the same time, the buzzer beeps at the same rate as the incoming signals from the remote control transmitter. The pressing of different buttons on the remote control will result in different pulse rates which would change the rate at which the LED blinks or the buzzer beeps. When no signal is sensed by the sensor module, output pin 2 of the sensor goes high and, as a result, transistor T1 switches off and hence LED1 and buzzer BZ1 go off. This circuit requires 5V regulated power supply which can be obtained from 9V eliminator and connected to the circuit through a jack. Capacitor C1 smoothes DC input while capacitor C2 suppresses any sudden spikes appearing in the input supply. Here, a plastic moulded sensor has been used so that it can easily stick out from a cut in the metal box in which it is housed. It requires less space. Proper grounding of the metal case will ensure that the electromagnetic emissions which are produced by tube-lights and electronic ballasts etc (which lie within the bandwidth of receiver circuit) are effectively grounded and do not interfere with the functioning of the circuit. The proposed layout of the box containing the circuit is shown in the figure. The 9-volt DC supply from the eliminator can be fed into the jack using a banana-type plug.
Tech. Editor’s note: In fact, the complete gadget ca
n be assembled in the eliminator’s housing itself and a cut can be made in its body for exposing the IR module’s sensor part

Concept and visual structure

A seven segment display, as its name indicates, is composed of seven elements. Individually on or off, they can be combined to produce simplified representations of the Hindu-Arabic numerals. Each of the numbers 0, 6, 7 and 9 may be represented by two or more different glyphs on seven-segment displays.
The seven segments are arranged as a rectangle of two vertical segments on each side with one horizontal segment on the top and bottom. Additionally, the seventh segment bisects the rectangle horizontally. There are also fourteen-segment displays and sixteen-segment displays (for full alphanumeric); however, these have mostly been replaced by dot-matrix displays.
Often the seven segments are arranged in an oblique, or italic, arrangement, which aids readability.

A mechanical seven segment display for displaying petrol prices.
Most separate 7-segment displays use an array of light-emitting diodes (LEDs), though other types exist using alternative technologies such as cold cathode gas discharge, vacuum fluorescent, incandescent filament, liquid crystal display (LCD), etc. For gas price totems and other large signs, electromagnetically flipped light-reflecting segments (sometimes called "vanes") are still commonly used. An alternative to the 7-segment display in the 1950s through the 1970s was the vacuum tube-like nixie tube.
In a simple LED package, each LED is typically connected with one terminal to its own pin on the outside of the package and the other LED terminal connected in common with all other LEDs in the device and brought out to a shared pin. This shared pin will then make up all of the cathodes (negative terminals) OR all of the anodes (positive terminals) of the LEDs in the device; and so will be either a "Common Cathode" or "Common Anode" device depending how it is constructed. Hence a 7 segment plus DP package will only require nine pins to be present and connected.Integrated displays also exist, with single or multiple digits. Some of these integrated displays incorporate their own internal decoder, though most do not – each individual LED is brought out to a connecting pin as described



Seven segment displays can be found in patents as early as 1908 (in U.S. Patent 974,943, F W Wood invented an 8-segment display, which displayed the number 4 using a diagonal bar), but did not achieve widespread use until the advent of LEDs in the 1970s. They are sometimes even used in unsophisticated displays like cardboard "For sale" signs, where the user either applies color to pre-printed segments, or (spray)paints color through a seven-segment digit template, to compose figures such as product prices or telephone numbers.For many applications, dot-matrix LCDs have largely superseded LED displays, though even in LCDs 7-segment displays are very common. Unlike LEDs, the shapes of elements in an LCD panel are arbitrary since they are formed on the display by a kind of printing process. In contrast, the shapes of LED segments tend to be simple rectangles, reflecting the fact that they have to be physically moulded to shape, which makes it difficult to form more complex shapes than the segments of 7-segment displays. However, the high common recognition factor of 7-segment displays, and the comparatively high visual contrast obtained by such displays relative to dot-matrix digits, makes seven-segment multiple-digit LCD screens very common on basic calculators

Basic UPS Power Supply





This circuit is a simple form of the commercial UPS, the circuit provides a constant regulated 5 Volt output and an unregulated 12 Volt supply. In the event of electrical supply line failure the battery takes over, with no spikes on the regulated supply.

This circuit can be adapted for other regulated and unregulated voltages by using different regulators and batteries. For a 15 Volt regulated supply use two 12 Volt batteries in series and a 7815 regulator. There is a lot of flexibility in this circuit.TR1 has a primary matched to the local electrical supply which is 240 Volts in the UK. The secondary winding should be rated at least 12 Volts at 2 amp, but can be higher, for example 15 Volts. FS1 is a slow blow type and protects against short circuits on the output, or indeed a faulty cell in a rechargeable battery. LED 1 will light ONLY when the electricity supply is present, with a power failure the LED will go out and output voltage is maintained by the battery. The circuit below simulates a working circuit with mains power applied.


Between terminals VP1 and VP3 the nominal unregulated supply is available and a 5 Volt regulated supply between VP1 and VP2. Resistor R1 and D1 are the charging path for battery B1. D1 and D3 prevent LED1 being illuminated under power fail conditions. The battery is designed to be trickle charged, charging current defined as :-
(VP5 - 0.6 ) / R1where VP5 is the unregulated DC power supply voltage.D2 must be included in the circuit, without D2 the battery would charge from the full supply voltage without current limit, which would cause damage and overheating of some rechargeable batteries.


Note that in all cases the 5 Volt regulated supply is maintained constantly, whilst the unregulated supply will vary a few volts.Standby CapacityThe ability to maintain the regulated supply with no electrical supply depends on the load taken from the UPS and also the Ampere hour capacity of the battery. If you were using a 7A/h 12 Volt battery and load from the 5 Volt regulator was 0.5 Amp (and no load from the unregulated supply) then the regulated supply would be maintained for around 14 hours. Greater A/h capacity batteries would provide a longer standby time, and vice versa