Wednesday, May 14, 2008

TV remote control Blocker


Just point this small device at the TV and the remote gets jammed . The circuit is self explanatory . 555 is wired as an astable multivibrator for a frequency of nearly 38 kHz. This is the frequency at which most of the modern TVs receive the IR beam . The transistor acts as a current source supplying roughly 25mA to the infra red LEDs. To increase the range of the circuit simply decrease the value of the 180 ohm resistor to not less than 100 ohm. It is required to adjust the 10K potentiometer while pointing the device at your TV to block the IR rays from the remote. This can be done by trial and error until the remote no longer responds

555 timer as the bases of the touch switch


This circuit uses a 555 timer as the bases of the touch switch. You can learn more about 555 timers in the Learning section on my site. When the plate is touched the 555 timer is triggered and the output on pin 3 goes high turning on the LED and the buzzer for a certain period of time. The time that theLED and the buzzer is on is based on the values of the capacitor and resistor connected to pin 6 & 7. The 10M resistor on pin 2 causes the the circuit to be very sensitive to the touch

Control electrical appliances using PC


Control electrical appliances using PC Here is a circuit for using the printer port of a PC, for control application using software and some interface hardware. The interface circuit along with the given software can be used with the printer port of any PC for controlling up to eight equipment .The interface circuit shown in the figure is drawn for only one device, being controlled by D0 bit at pin 2 of the 25-pin parallel port. Identical circuits for the remaining data bits D1 through D7 (available at pins 3 through 9) have to be similarly wired. The use of opto-coupler ensures complete isolation of the PC from the relay driver circuitry.Lots of ways to control the hardware can be implemented using software. In C/C++ one can use the outportb(portno,value) function where portno is the parallel port address (usually 378hex for LPT1) and 'value' is the data that is to be sent to the port. For a value=0 all the outputs (D0-D7) are off. For value=1 D0 is ON, value=2 D1 is ON, value=4, D2 is ON and so on. eg. If value=29(decimal) = 00011101(binary) ->D0,D2,D3,D4 are ON and the rest are OFF.

Generating -5VDC from +5VDC

If you happen to have the March 1984 issue of Radio-Electronics, turn to page 78. This issue has the very first instalment of Robert Grossblatt's "Designer's Notebook" column. In it, he shows a simple circuit which will supply a negative voltage, given a positive voltage. It's basically a 555-based oscillator, and a voltage-doubling rectifier. He claims the negative-voltage output should be good for about 60ma. No-load voltage should be pretty close to the input voltage (but negative), although the voltage will drop a bit, depending on the load. If you put +5V into the circuit, it'll give you around -5V out. load. If you put +5V into the circuit, it'll give you around -5V out. If the load makes the voltage drop too low (-3V or -4V), you could always just feed the circuit with a higher voltage (like maybe 9V or 12V) and then just regulate the output down to -5V using a 7905 regulator. I've used this circuit a couple of times for powering op-amp's, and it works great!


The circuit is set up to oscillate at about 45kHz, with a duty cycle pretty close to 50%. None of the values of any of the parts are terribly critical, so if the capacitors or resistors are "in the ballpark", it should still work okay

Generating -5VDC from +5VDC

If you happen to have the March 1984 issue of Radio-Electronics, turn to page 78. This issue has the very first instalment of Robert Grossblatt's "Designer's Notebook" column. In it, he shows a simple circuit which will supply a negative voltage, given a positive voltage. It's basically a 555-based oscillator, and a voltage-doubling rectifier. He claims the negative-voltage output should be good for about 60ma. No-load voltage should be pretty close to the input voltage (but negative), although the voltage will drop a bit, depending on the load. If you put +5V into the circuit, it'll give you around -5V out. load. If you put +5V into the circuit, it'll give you around -5V out. If the load makes the voltage drop too low (-3V or -4V), you could always just feed the circuit with a higher voltage (like maybe 9V or 12V) and then just regulate the output down to -5V using a 7905 regulator. I've used this circuit a couple of times for powering op-amp's, and it works great!


The circuit is set up to oscillate at about 45kHz, with a duty cycle pretty close to 50%. None of the values of any of the parts are terribly critical, so if the capacitors or resistors are "in the ballpark", it should still work okay

FM Oscillator

a VCO and buffer that operates across the entire FM broadcast band (88-108 MHz). I stole the main idea from the local oscillator in a radio shack scanner (pro2004). I like this design because it doesn't require a tapped coil, it tunes very broadly, it's stable, and it has a nice, hot output

As with all VHF circuits, pay particular attention to construction technique. I recommend cutting little square islands on one side of a two-sided copper-clad board. Use the remainder of that side as the ground plane, and leave the bottom side to serve as a shield. If you keep all lead lengths short, the circuit is quite stable.
With the parts listed here, effective frequency range extends well beyond the FM broadcast band in both directions. If a 6V zener is substituted for CR2, the circuit will run from a 9V battery, with a slightly smaller tuning range. The output is hot enough that the signal can easily travel a city block using just a clip lead for an antenna.

Headlight Reminder Circuit

A [...] solution is to go from the +12 Switched sidelight feed, via a buzzer to the drivers door light switch, you then need to put a diode in the door circuit to stop the other doors operating the buzzer
Thus when you leave your lights on AND open the drivers door, the buzzer sounds. If you mean to leave your lights on, just shut the door and the buzzer stops!